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1 Benchmarking

(a) Write a script to perform basic end-to-end benchmarking of the forward and backward

passes in your model. Specifically, your script should support the following: • Given

hyperparameters (e.g., number of layers), initialize a model. • Generate a random batch

of data. • Run w warm-up steps (before starting measuring time), then time the exe-

cution of n steps (either only forward, or both forward and backward passes, depending

on an argument). For timing, you can use the Python timeit module (e.g., either us-

ing the timeit function, or using timeit.default timer(), which gives you the system’s

highest resolution clock, thus a better default for benchmarking than time.time()). •
Call torch.cuda.synchronize() after each step. Deliverable: A script that will initialize

a basics Transformer model with the given hyperparameters, create a random batch of

data, and time forward and backward passes.

(b) Time the forward and backward passes for the model sizes described in §2.1.2. Use

1 warmup step and compute the average and standard deviation of timings over 5

measurement steps. How long does a forward pass take? How about a backward pass?

Do you see high variability across measurements, or is the standard deviation small?

Deliverable: A 1-2 sentence response with your timings.

Model Size Forward Pass (s) Backward Pass (s) Total (s)

Small 0.0188 0.0340 0.0529

Medium 0.045 0.0852 0.131

Large 0.0964 0.191 0.287

Extra Large 0.185 0.359 0.545

2.7B 0.257 0.534 0.791

The standard deviation is exceptionally small (1000 ppm at the most).
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(c) One caveat of benchmarking is not performing the warm-up step. Repeat your analysis

without the warm-up step. How does this affect your results? Why do you think this

happens? Deliverable: A 2-3 sentence response.

Model Size Forward Pass (s) Backward Pass (s) Total (s)

Small 0.084 0.029 0.118

Medium 0.115 0.085 0.200

Large 0.176 0.191 0.367

Extra Large 0.247 0.360 0.607

2.7B 0.319 0.535 0.855
The standard deviation is still very small for the backward pass, but the forward pass

now has a standard deviation of closer to 30 ms. It is even more enlightening to see

that is is always the first forward pass that takes an order of magnitude longer than

the rest.

2 function call table

(a) What is the total time spent on your forward pass, as measured by the PyTorch profiler?

Does it match what we had measured before with the Python standard library? (Hint:

use the “CPU Total” and “GPU Total” columns, and look for the row corresponding

to your record function block) Deliverable: A 1-2 sentence response.

For the forward pass, the CPU total was 183.275ms and the GPU total was 169.738ms.

This matches roughly what we recorded before (0.247) since the GPU can run at the

same time as the CPU, so we wouldn’t need to necessarily add these two times together.

(b) What CUDA kernel takes the most cumulative GPU time during the forward pass?

How many times is this kernel invoked during a single forward pass of your model? Is it

the same kernel that takes the most runtime when you do both forward and backward

passes? Deliverable: A 1-2 sentence response

The Kernel that takes the most GPU time for the forward

pass is sm80 xmma gemm f32f32 f32f32 f32 tn n tilesize128x12.. and

sm80 xmma gemm f32f32 f32f32 f32 tn n tilesize64x64x.. with 439.034ms and

256.109ms respectively which takes 81.88% of the GPU time. For for-

ward and backward passes, The time is not split between a lot more ker-

nels, with these two still at the top but only at 17% and 15%. Oth-

ers include sm80 xmma gemm f32f32 f32f32 f32 tn n tilesize64x64x.., void cut-
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lass::Kernel¡cutlass 80 simt sgemm 128x128 8.

sm80 xmma gemm f32f32 f32f32 f32 nn n tilesize64x128..

(c) Although the vast majority of FLOPs take place in matrix multiplications, you will

notice that several other kernels still take a non-trivial amount of the overall runtime.

What other kernels besides matrix multiplies do you see accounting for non-trivial

CUDA runtime in the forward pass? Deliverable: A 1-2 sentence response.

aten::copy (2.39%), aten::div (3.12%), aten::mul (3.06%), and aten::bmm

(1.90%) all take non trivial amounts of time. Their respective ker-

nels are maybe sm80 xmma gemm f32f32 f32f32 f32 nn n tilesize64x64x...,

void at::native::vectorized elementwise kernel¡4, at..., void

at::native::elementwise kernel¡128, 2, at::nati...

(d) Profile running one complete training step with your implementation of AdamW (i.e.,

the forward pass, computing the loss and running a backward pass, and finally an

optimizer step, as you’d do during training). How does the fraction of time spent on

matrix multiplication change, compared to doing inference (forward pass only)? How

about other kernels? Deliverable: A 1-2 sentence response

Matrix Multiplies drops from 82% to 71%, aten::mul rises from 3.06% to 8.40%.

aten::add grows from 1.7% to 3.3%. Everything else is in the same ballpark.

3 flame graph

(a) Run with the PyTorch profiler with a XL-shaped language model’s (§2.1.2) forward pass

and generate a flame graph. Then, answer the questions below. (a) Include a snapshot

of your flame graph here. You should see a cyclic pattern in your graph – where does

that come from?
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The cyclic nature is because of the multiple layers of transformer blocks and multiple

linear layers within each of those.

(b) What fraction of time does your model seem to spend on all RMSNorm layers? (Hint:

you can zoom in and analyze one Transformer block, then multiply by the number of

layers.)

106 + 82 * 48 / 354629 us. = 0.025.

About 2.5% of the time is spent on RMS norms.

(c) What fraction of the time is spent in softmax (inside the attention operation)?

248 * 48 / 354629 = 0.033.

About 3.3% of the time is spent on softmax operations.

(d) Does the graph match your prior expectations of how runtime is distributed in your

Transformer? Did you see any surprises? Deliverable: A 2-4 sentence response

To be honest, it is almost exactly what I expected. The vast majority of the runtime

is spent on matrix multiplies, and this is further divided based on the relative sizes of

the linear layers. The large feed forward layers take much more time than the smaller

attention projections although there are more of those.

4 benchmarking mixed precision)

(a) Modify your benchmarking script to optionally run the model with mixed precision.

Time the forward and backward passes with and without mixed-precision for each lan-

guage model size described in §2.1.2. Compare the results of using full vs. mixed

precision, and comment on any trends as model size changes. You may find the null-

context no-op context manager to be useful. Deliverable: A 2-3 sentence response with

your timings and commentary

Model Size Time (s) Time Mixed (s)

Small 0.0529 0.0341

Medium 0.131 0.0694

Large 0.287 0.122

Extra Large 0.545 0.192

2.7B 0.791 0.194
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The mixed model runs far faster, especially for the larger model sizes. This is because

GPU’s can run much faster with smaller data types.

(b) Suppose we are training the following model on a GPU: ToyModel(). Suppose that the

model parameters are originally in FP32. We’d like to use autocasting mixed precision

with FP16. What are the data types of: • the model parameters within the autocast

context, • the output of the first feed-forward layer (ToyModel.fc1), • the output of

layer norm (ToyModel.ln), • the model’s predicted logits, • the loss, • and the model’s

gradients? Deliverable: The data types for each of the components listed above

the model parameters within the autocast context: float32

the output of the first feed-forward layer (ToyModel.fc1): float16

the output of layer norm (ToyModel.ln): float32

the model’s predicted logits: float16

the loss: float32

the model’s gradients: float32

(c) You should have seen that FP16 mixed precision autocasting treats the layer normal-

ization layer differently than the feed-forward layers. What parts of layer normalization

are sensitive to mixed precision? If we use BF16 instead of FP16, do we still need to

treat layer normalization differently? Why or why not? Deliverable: A 2-3 sentence

response.

Layer normalization is sensitive to mixed precision because it includes a lot of arithmetic

sums which can accmulate large rounding errors. It is especially problematic with

standard deviation where each rounding error is squared. This can decrease precision

and lead to unstable training. BF16 are better than FP16 because of their increased

dynamic range, however it is still probably best to use float32 for these steps.

5 Pytorch layer norm

(a) Benchmark your RMSNorm implementation against PyTorch’s native LayerNorm. For

that, write a script that will: (a) Fix the number of rows in the input matrix as

50,000. (b) Iterate through the following values for the size of the last dimension:

[1024, 2048, 4096, 7 8192] (c) Create random inputs x and w for the appropriate

size. For LayerNorm, also create a random bias term. (d) Time 1,000 forward passes

through each normalization layer using those inputs. (e) Make sure to warm up and call
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torch.cuda.synchronize() after each forward pass. Report the timings you get for these

3 implementations. Which implementation seems faster — RMSNorm or LayerNorm?

Why do you think that’s the case? How does this gap seem to evolve as the hidden

dimension grows? Deliverable: A table with your timings, and a 2-3 sentence response.

Batch Size RMS Time (ms) LayerNorm Time (ms)

1024 0.659 0.193

2048 1.114 0.324

4096 2.176 0.803

8192 4.298 1.649
Clearly the layernorm is much faster, especially for smaller batch sizes. This is

probably because Pytorch has made a custom optimized kernel for layernorm since it

is such a common operation. It was 3.41 times faster for a batch size of 1024 but only

2.61 times faster for the batch size of 8192.

(b) For each language model size described in §2.1.2, replace RMSNorm in the Transformer

model by PyTorch’s native LayerNorm. How long does a forward pass (with our previous

default parameters for model size, etc) take on average? (Hint: you can modify your

Transformer model to take flags in the constructor that indicate which implementation

of normalization layer to use. Then, instantiate your Transformer with different flags

to measure the effect on the forward pass). Deliverable: A 2-3 sentence response.

Model Size Forward Pass RMS (s) Forward Pass LayerNorm (s)

Small 0.019 0.017

Medium 0.045 0.043

Large 0.096 0.092

Extra Large 0.185 0.181

2.7B 0.257 0.251

Using the

Layer Norm instead of the RMS Norm saved a little bit of time, but it was honestly

pretty negligible compared to the matrix multiples, especially as the model size grew.

6 triton rmsnorm forward

7 rmsnorm forward benchmarking

(a) Extend your benchmarking script from the problem pytorch layernorm to also have

your Triton RMSNorm implementation as an alternative normalization layer. Use the

same configurations from that existing script. Report the timings you get for these

3 implementations. Do you see a speed-up with your Triton kernel for any of those

CS 336: Language Modelling from Scratch 6



Assignment 2 May 3, 2024

sizes? What is the smallest size of the last dimension for which you see a speed-up?

Deliverable: A table or plot with your measurements, and a one-two sentence response.

Batch Size RMS Time (ms) LayerNorm Time (ms) Triton RMS Time (ms)

1024 0.655 0.194 0.553

2048 1.114 0.324 0.357

4096 2.176 0.803 0.620

8192 4.298 1.649 1.156

Yes, the triton kernel is faster than the pytorch implementation (and even the pytorch

layer norm), but only after a certain batch size. At 2048, it has already passed the

pytorch RMS norm, but it isn’t faster than layernorm until 8192.

(b) Replace your original RMSNorm layers in the Transformer model with (a) your Triton

implementation, in addition to (b) with PyTorch’s native LayerNorm, and benchmark

your forward pass with our standard hyperparameters. Report the timings you get with

each normalization layer. Deliverable: A table with forward pass latencies with each of

the normalization layer implementations. You can repeat the numbers you got before,

just include them for ease of comparison.

Model Size F Pass RMS (s) F Pass LayerNorm (s) F Pass Triton (s)

Small 0.0190 0.0173 0.0151

Medium 0.045 0.043 0.0398

Large 0.096 0.092 0.0879

Extra Large 0.185 0.181 0.183

2.7B 0.257 0.251 0.249

8 rmsnorm jvp g

(a) Assume that x is a N × H matrix, and that g is a H-dimensional vector. Derive the

JVP for the g vector in RMSNorm (Equation 5). (Hint: start with Equation 5 and take

the partial derivative of a given entry in the output vector with respect to a given entry

of g). Deliverable: A derivation ending with a simple expression to compute gL when

given x, g and RMSNorm(x,g)L.
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First take the gradient of the RMSNorm with respect to g.

∇gRMSNorm(x, g) = ∇g
x√

1
dmodel

∑dmodel

i=1 x2
i + ϵ

⊙ g

=
N∑
j=0

xj√
1

dmodel

∑dmodel

i=1 x2
i + ϵ

The final equation for the gradient with respect to the loss is:

∇gL =
N∑
j=0

xj√
1

dmodel

∑dmodel

i=1 x2
i + ϵ

⊙∇RMSNormL

9 rmsnorm jvp x

(a) Assume that x is a N × H matrix, and that g is a H-dimensional vector. Derive the

JVP for the x input matrix in RMSNorm (Equation 5). (Hint: start with Equation 5

and take the partial derivative of a given entry RMSNorm(x, g)k in the output vector

with respect to a given xij ). Deliverable: A derivation ending with a simple expression

to compute xL when given x, g and RMSNorm(x,g)L.

First take the gradient of the RMSNorm with respect to x.

∇xRMSNorm(x, g) = ∇x
x√

1
dmodel

∑dmodel

i=1 x2
i + ϵ

⊙ g

=
1

RMS(x)
∇x(x⊙ g) + (x⊙ g)∇x

1

RMS(x)

=
g

RMS(x)
+ (x⊙ g)

−1

RMS(x)2
∇xRMS(x)

=
g

RMS(x)
+ (x⊙ g)

−1

RMS(x)2

∑
i

xi

H × RMS(x)

=
g

RMS(x)
− x

∑
i xi ⊙ g

HRMS(x)3

The final equation for the gradient with respect to the loss is:

∇xL =
g ⊙∇RMSNormL

RMS(x)
− x

∑
i xi ⊙ g ⊙∇RMSNormLi

H × RMS(x)3
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10 triton rmsnorm backward

11 rmsnorm benchmarking

(a) Extend your benchmarking script for normalization layers to optionally execute a back-

ward pass. To run the backward pass, simply call result.backward(dy), where result is

the output of the forward pass, and dy is another random tensor (in addition to the

random inputs for the forward pass) of the appropriate shape. Remember to clear the

gradients (set tensor.grad = None) of the input tensors before each forward pass; oth-

erwise, the backward pass will also accumulate gradients at each time iteration. Then,

show the average time for a combined forward and backward pass for each normalization

layer implementation so far. Deliverable: A table with your timings

Batch Size RMS Time (ms) LayerNorm Time (ms) Triton RMS Time (ms)

1024 0.970 0.781 0.980

2048 1.671 0.996 1.072

4096 3.253 1.583 2.00

8192 6.416 2.806 3.999

(b) Swap your PyTorch implementation of RMSNorm with your Triton implementation, and

measure end-to-end performance. How long does your forward pass take now? What

about your backward pass? What speed-up do you get in each case? (Hint: to make

your Triton implementation a drop-in replacement for your previous one, you can write

a simple torch.nn.Module subclass that has a g nn.Parameter, and that simply calls

your Triton autograd function in the forward pass). Deliverable: Two-three sentences

with your timings and analysis.

I already analyzed the forward pass in a previous question, so here are the backwards

times for the s, m, l, xl, and 2.7 models respectively:

Without triton: 0.0513, 0.137, 0.309, 0.609, 0.892

With triton: 0.0498, 0.133, 0.301, 0.582, 0.873

It saves about 2% of the time for a forward and backward pass combined.

12 torch compile

(a) Extend your RMSNorm benchmarking script to include another candidate: a compiled

version of your PyTorch implementation of RMSNorm. How does it compare to the

existing layers in the forward pass? Deliverable: A table with your timings for the

forward pass including your compiled RMSNorm layer.
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Last Dimension: 1024

RMSNorm Time: 0.7205798989161849 seconds

LayerNorm Time: 0.2628357317298651 seconds

Triton Time: 0.639177706092596 seconds

Compiled Time: 1.4790748711675406 seconds

Last Dimension: 2048

RMSNorm Time: 1.1831099749542773 seconds

LayerNorm Time: 0.39431128092110157 seconds

Triton Time: 0.4326761863194406 seconds

Compiled Time: 0.9795156619511545 seconds

Last Dimension: 4096

RMSNorm Time: 2.2562566259875894 seconds

LayerNorm Time: 0.8788720788434148 seconds

Triton Time: 0.7016721689142287 seconds

Compiled Time: 0.841821285430342 seconds

Last Dimension: 8192

RMSNorm Time: 4.455199412070215 seconds

LayerNorm Time: 1.717649782076478 seconds

Triton Time: 1.2332354979589581 seconds

Compiled Time: 1.5847675134427845 seconds

The compiled RMSNorm does nearly as good as the Triton implementation, es-

pecially at biggest model sizes, but it is not quite as good because it might be choosing

suboptimal kernels.

(b) Run your analysis including the backward pass. How does the compiled RMSNorm

layer perform? Deliverable: A table with your timings for the combined forward and

backward passes including your compiled RMSNorm layer

Last Dimension: 1024

RMSNorm Time: 0.9789539077319205 seconds

LayerNorm Time: 0.7794575430452824 seconds

Triton Time: 1.1265135020948946 seconds

Compiled Time: 2.2337939380668104 seconds
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Last Dimension: 2048

RMSNorm Time: 1.6737040029838681 seconds

LayerNorm Time: 0.9967236761003733 seconds

Triton Time: 1.2986896289512515 seconds

Compiled Time: 1.0077345240861177 seconds

Last Dimension: 4096

RMSNorm Time: 3.255894050002098 seconds

LayerNorm Time: 1.5831958851777017 seconds

Triton Time: 2.2505642287433147 seconds

Compiled Time: 1.7227312279865146 seconds

Last Dimension: 8192

RMSNorm Time: 6.566828748211265 seconds

LayerNorm Time: 2.806836602743715 seconds

Triton Time: 4.2724682269617915 seconds

Compiled Time: 2.9690164611674845 seconds

(c) Now, compile your entire Transformer model in your end-to-end benchmarking script.

How does the performance of the forward pass change? What about the combined

forward and backward passes and optimizer steps? Conduct this analysis for each

language model size described in §2.1.2. Deliverable: A table comparing your vanilla

and compiled Transformer model

Model Sizes: s, m, l, xl, 2.7

Stock Forward (s): 0.017, 0.0457, 0.0942, 0.1849, 0.257

Compiled Forward Passes (s): 0.0067, 0.0160, 0.0566, 0.134, 0.192

Stock Full Training Step (s): 0.0513, 0.137, 0.309, 0.609, 0.892

Compiled Full Training Step (s): 0.0395, 0.109, 0.263, 0.525, 0.819

13 memory profiling

(a) Add an option to your profiling script to run your model through the memory profiler.

It may be helpful to reuse some of your previous infrastructure (e.g., to activate mixed-

precision, load specific model sizes, etc). Then, run your script to get a memory profile

of the 2.7B model when either doing inference only (just forward pass) or a full training

step. How do your memory timelines look like? Can you tell which stage is running
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based on the peaks you see? Deliverable: Two images of the “Active memory timeline”

of a 2.7B model, from the memory viz tool: one for the forward pass, and one for

running a full training step (forward and backward passes, then optimizer step), and a

2-3 sentence response.

The memory is super cool to look at because it matches exactly what you’d expect it

to look like. First there is the steep uptick in memory which represents allocating

space for the model’s paramters (and the optimizer state in the second one). Then for

the forward pass (note this is at inference time, so this is run with torch.no grad()),

there is only a bunch of small spikes for storing activations and such. The full pass on

the other hand has a gradual incline which represents the forward pass, accumulating

stored activations. It then shows the backward pass where these activations are

released from memory and only the gradients are stored. Then finally the gradients

are used to update the parameters and the optimizer state.

(b) What is the peak memory usage of each model size when doing a forward pass? What

about when doing a full training step? Deliverable: A table with two numbers per

model size.
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Model Sizes: s,m,l,xl,2.7

Forward Pass (with no grad) (GB): 0.56, 1.49, 3.23, 6.42, 10.77

Full Pass (GB): 3.95, 10.55, 21.22, 38.63, 51.91

(c) Find the peak memory usage of the 2.7B model when using mixed-precision, for both a

forward pass and a full optimizer step. Does mixed-precision significantly affect memory

usage? Deliverable: A 2-3 sentence response.

For just the forward pass, the 2.7 Mixed Model uses 15.65 GB. For the full pass it uses

50.04 GB. I’m not sure why the forward pass is higher. If anything I would expect it to

be the same (as it is in the full training step) because from my understanding the mixed

precision is only used to cast the variables for matmuls, not for affecting the underlying

parameters. Maybe that is why the forward pass is higher, because it needs to allocate

memory for the lower precision parameters as well.

(d) Consider the 2.7B model. At our reference hyperparameters, what is the size of a tensor

of activations in the Transformer residual stream, in single-precision? Give this size in

MB (i.e., divide the number of bytes by 10242 ). Deliverable: A 1-2 sentence response

with your derivation

Size = batch size x context length x d model x data size

Size = 16 x 128 x 2560 x 4

Size = 17.97 MB

(e) Now look closely at the “Active Memory Timeline” from pytorch.org/memory viz of

a memory snapshot of the 2.7B model doing a forward pass. When you reduce the

“Detail” level, the tool hides the smallest allocations to the corresponding level (e.g.,

putting “Detail” at 10% only shows the 10% largest allocations). What is the size of the

largest allocations shown? Looking through the stack trace, can you tell where those

allocations come from? Deliverable: A 1-2 sentence response.

The biggest memory allocations (excluding the incremental 100 MiB blocks allocated

for the parameters) are the 80.0MiB allocations from the feedforward layers.

14 distributed communication single node

(a) Write a script to benchmark the runtime of the all-reduce operation in the single-node

multi-process setup. The example code above may provide a reasonable starting point.
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Experiment with varying the following settings: Backend + device type: Gloo + CPU,

Gloo + GPU, NCCL + GPU. all-reduce data size: float32 data tensors ranging 512KB,

1MB, 10MB, 50MB, 100MB, 500MB, 1GB. Number of processes: 2, 4, or 6 processes.

Resource requirements: Up to 6 GPUs. Each benchmarking run should take less than

5 minutes. Deliverable: Plot(s) and/or table(s) comparing the various settings, with

2-3 sentences of commentary about your results and thoughts about how the various

factors interact.
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One trend that is immediately obvious is that NCCL is significantly faster (10x). Fur-

thermore, once the model reaches a certain size to get past the overhead of having

multiple workers, the time spent scales roughly linearly. There was a lot more overhead

with more workers for NCCL and overall less workers generally operated faster.
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15 distributed communication multi node

(a) Benchmark the runtime of the all-reduce operation in the multi-node multi-process

setting. In particular, vary the following settings: Number of nodes: 1 or 2. Your

results from problem distributed communication single node should cover the single-

node setting. Backend + device type: Gloo + CPU, Gloo + GPU, NCCL + GPU.

Size of data on each device: float32 data tensors ranging 512KB to 1GB. Number

of processes per node: For the single-node setting, use 2, 4 or 6 processes (matching

problem distributed communication single node). For measuring multi-node latency,

use 1, 2, or 4 processes per node. Deliverable: Plot(s) comparing the various settings,

with 2-4 sentences of commentary about your results and thoughts about how the

various factors interact. In particular, be sure to compare the single- and multi-node

settings.
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It seems that gloo operates faster when workers are split between nodes than on a single

node. On the other hand, NCCL operates faster when workers are on a single node than

when they are split between nodes.
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16 naive ddp

17 naive ddp benchmarking

(a) In this näıve DDP implementation, parameters are individually all-reduced across ranks

after each backward pass. To better understand the overhead of data parallel training,

create a script to benchmark your previously-implemented language model when trained

with this näıve implementation of DDP. Measure the total time per training step and

the proportion of time spent on communicating gradients. Collect measurements in

both the single-node setting (1 node x 2 GPUs) and the multi-node setting (2 nodes x 1

GPU). Run your benchmark on GPUs with each of the model sizes described in §2.1.2.
Deliverable: A description of your benchmarking setup, along with the measured time

per training iteration and time spent communicating gradients for each setting.

I initialized a 2.7B transformer model and benchmarked the average full training step

(as well as the individual parts):

With 2 Nodes x 1 GPU each:

Forward: 0.4200414866791107

all reduce: 0.5297914531547576

optimizer: 0.12092821132391691

With 1 Node x 2 GPU each:

Forward: 0.42503071839455514

all reduce: 0.09938307798001915

optimizer: 0.12049294619355351

Clearly, the forward and backward passes are equivalent between the two setups,

however, the all reduce takes siginifcantly longer on two nodes than on one. This

matches with what we predicted earlier that NCCL takes longer when split between

nodes.

18 minimal ddp flat benchmarking

(a) Modify your minimal DDP implementation to communicate a tensor with flattened gra-

dients from all parameters.a Compare its performance with the minimal DDP imple-

mentation that issues an allreduce for each parameter tensor under the previously-used

conditions (model sizes described in §2.1.2 on 1 node x 2 GPUs and 2 nodes x 1 GPU).

Deliverable: The measured time per training iteration and time spent communicating

gradients under distributed data parallel training with a single batched all-reduce call.

1-2 sentences comparing the results when batching vs. individually communicating
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gradients.

Again, I initialized a 2.7B transformer model and benchmarked the average full training

step (as well as the individual parts):

With 2 Nodes x 1 GPU each:

Forward: 0.41875554379075763

all reduce: 0.5043694798368961

optimizer: 0.11989447647938505

With 1 Node x 2 GPU each:

Forward: 0.4197033928707242

all reduce: 0.10176506540738046

optimizer: 0.12018219772726298

There is slight improvement in the 2 Nodes case (presumably because the over-

head for NCCL communication calls is higher there), but for the single node case, it is

slightly worse.

19 ddp overlap individual parameters

20 ddp overlap individual parameters benchmarking

(a) Benchmark the performance of your DDP implementation when overlapping backward

pass computation with communication of individual parameter gradients. Compare its

performance on each of the model sizes described in §2.1.2 with our previously-studied

settings (the minimal DDP implementation that either issues an all-reduce for each

parameter tensor or a single all-reduce for the concatenation of all parameter tensors).

Deliverable: The measured time per training iteration and time spent communicating

gradients under distributed data parallel training with a single batched all-reduce call.

1-2 sentences comparing the results when batching vs. individually communicating

gradients.
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Model total Forward All Reduce Optimizer

naive s 0.0757 0.0439 0.0236 0.0082

naive m 0.1726 0.0827 0.0716 0.0183

naive l 0.3410 0.1464 0.1552 0.0394

naive xl 0.6329 0.2475 0.3094 0.0760

naive 2.7 0.9558 0.3288 0.5059 0.1211

indiv s 0.0664 0.0579 0.0003 0.0082

indiv m 0.1386 0.1196 0.0006 0.0184

indiv l 0.2703 0.2291 0.0011 0.0400

indiv xl 0.5191 0.4403 0.0014 0.0774

indiv 2.7 0.7931 0.6718 0.0009 0.1204

The overlapping

communication calls speeds up model training significantly as shown in the table.

These benefits are shown in the stark contrast between all reduce times. Although the

forward pass takes longer, since computation and communication is overlapping, the

overall time is reduced.

(b) Instrument your benchmarking code with the PyTorch profiler and export a chrome

trace when benchmarking your DDP implementation on an XL-sized model, with and

without overlapping computation with communication. Visually compare the two traces,

and provide a profiler screenshot demonstrating that one implementation overlaps com-

pute with communication while the other doesn’t. Deliverable: 2 screenshots (one from

the DDP implementation that overlaps compute with communication, and another that

doesn’t) that visually show that communication is or isn’t overlapped with the backward

pass.
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(c) A common way of quantifying the communcation-computation overlap is to divide the

time spent in computation while communication by the total amount of time spent com-

municating. Thus, an overlap of 1.0 indicates that all communication happens while

other compute is happening, while an overlap of 0.0 indicates that they are completely

disjoint. Use the Holistic Trace Analysis library to measure degree of communication-

computation overlap for each model.a As a sanity check, ensure that you get the ex-

pected overlap of 0.0 when analyzing the naive DDP implementation. Deliverable: 1-2
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sentence response with the measured communication computation overlap ratio.

Naive Implementation:

Overlapped Implementation:
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As expected the naive implementation conducts all communication independently so it

does not take advantage of parallelism. The overlapped implementation has roughly

30% overlap which is not ideal, but also a big improvment over 0%.
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21 ddp overlap bucketed

22 ddp bucketed benchmarking

(a) Vary the maximum bucket size (5, 10, 50, 100, 500MB) and compare the results with

individually communicating parameter gradients. Experiment with each of the model

sizes described in §2.1.2 on GPUs with both the NCCL and Gloo backends. Comment

on your results—do they align with your expectations? If they don’t align, why not?

You may have to use the PyTorch profiler as necessary to better understand how com-

munication calls are ordered and/or executed. What changes in the experimental setup

would you expect would yield results that are aligned with your expectations? Deliv-

erable: Measured time per training iteration for various bucket sizes on each backend.

3-4 sentence commentary about the results, your expectations, and potential reasons

for any mismatch.

Using NCCL:
Bucket Size (MB) Small Large 2.7B

5 0.06007 0.20583 0.47231

10 0.05814 0.17627 0.46938

50 0.05520 0.17585 0.46978

100 0.05941 0.17407 0.47362

500 0.06203 0.17966 0.48678
Using size Large:
Bucket Size (MB) GLOO NCCL

5 1.3893 0.20583

10 1.330 0.17627

50 1.3568 0.17585

100 1.3724 0.17407

500 1.346 0.17966

It is clear that NCCL is much faster than

GLOO, but neither benefits from an expanded bucket size by that much. Maybe the

communication overhead is not large enough for it to make expanding the bucket size

worth it. However,the initial bucketing did show an improvement over the individually

shared parameters, so having a bucket size of around 10 MB seems to do pretty good.

Furthermore, if we tried some smaller bucket sizes as well, it might be clearer what the

trend is.

(b) Write an equation that models the overhead of DDP as a function of the total size

(bytes) of the model parameters (s), the all-reduce algorithm bandwidth (w, computed

as the size of each rank’s data divided by the time it takes to finish the all-reduce),

the overhead (seconds) associated with each communication call (o), and the number

of buckets (nb). From this equation, write an equation for the optimal bucket size that
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minimizes DDP overhead. Deliverable: Equation that models DDP overhead, and an

equation for the optimal bucket size

Time per bucket = s
w×nb

+ o

Total Overhead = s
w
+ o× nb

Therefore minimizing the DDP overhead would mean maximizing the bucket size.

23 optimizer state sharding

24 optimizer state sharding accounting

(a) Create a script to profile the peak memory usage when training language models

with and without optimizer state sharding (use the same model hyperparameters as

naive ddp benchmarking). Report the peak memory usage after model initialization,

directly before the optimizer step, and directly after the optimizer step. Do the results

align with your expectations? Break down the memory usage in each setting (e.g., how

much memory for parameters, how much for optimizer states, etc.). Perform your anal-

ysis on an XL-shaped model from §2.1.2. Deliverable: 2-3 sentence response with peak

memory usage results and a breakdown of how the memory is divided between different

model and optimizer components.

Non-sharded:

Sharded:
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I ran this experiemnt with two workers so it is unsurprising that the optimizer state

is approximately half as big in the second image. Even naively splitting parameters

naively by index seems to do a pretty decent job in this scenario. The gradient storage

is identical between the two, however, because that is irrespective of the optimizer

sharding.

(b) How does our implementation of optimizer state sharding affect training speed? Mea-

sure the time taken per iteration with and without optimizer state sharding for each

model size listed in §2.1.2, using both 1 node x 2 GPUs and 2 nodes x 1 GPU. What

proportion of a training iteration is spent communicating parameter updates (i.e., the

communication overhead of optimizer state sharding)? Deliverable: 2-3 sentence re-

sponse with your timings.

Model Sharded Non-Sharded Sharded Non-Sharded

Size (1 Node, 2 GPUs) (1 Node, 2 GPUs) (2 Nodes, 1 GPU) (2 Nodes, 1 GPU)

s 0.07117 0.07726 0.09876 0.08223

m 0.12144 0.12473 0.21154 0.16418

l 0.20450 0.21573 0.40238 0.29452

xl 0.35394 0.36822 0.76305 0.53689

2.7 0.46769 0.48816 1.18067 0.81046

For size 2.7B on 2 nodes, 0.4955820 seconds are spent on backward with 0.120947546
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seconds with shard, so .37/1.18 or 31% is spent communicating parameters in the op-

timizer step. Surprisingly, the model actually runs faster with sharding when using 1

Node, perhaps because the communication cost is negligible compared to benefits of

parallelism. However, the sharding takes 30-40% longer when using 2 nodes because of

the increasing communication costs.

(c) How does our approach to optimizer state sharding differ from ZeRO stage 1 (described

as ZeRODP Pos in Rajbhandari et al., 2020)? Deliverable: 2-3 sentence summary of

any differences, especially those related to memory and communication volume.

ZeRODP is different than our sharded optimizer because they also distribute parameters

and gradients between different nodes, not just the optimizer states.
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