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1 IsoFlops

t = 0.143 ∗ f 0.53 (1)

The predicted optimal training tokens for 1023 FLOPS is 2.40∗1011 tokens, and the predicted

optimal training tokens for 1024 FLOPS is 8.08 ∗ 1011.
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p = 1.16 ∗ f 0.47 (2)

The predicted optimal model size for 1023 FLOPS is 7.01 ∗ 1010 tokens, and the predicted

optimal training tokens for 1024 FLOPS is 2.06 ∗ 1011.

2 Scaling Laws Approach

For this task, I was allotted 2 ∗ 1018 FLOPS to determine the optimal model size and hyper-

parameters for a run of 1019 FLOPS. In order to do this, I conducted a hyper-parameter

sweep for a large amount of smaller models and extrapolated these findings for larger mod-

els. In parallel with Chinchilla’s methods, I decided to run Isoflops sweeps for each possible

compute level, find the optimal model and hyperparameter values for each, then finally ex-

trapolate scaling laws from each of those optimal values to find the optimal values for the

larger run.

Once the optimal values are found, extrapolating the scaling laws becomes trivial. A similar

process was used above with synthetic data to determine the optimal model and dataset

sizes for a large training run. We would just need to expand this process by extrapolating all

model dimensions and hyperparameters instead of purely total model parameters. However,

finding these optimal combinations is not easy. For each level of compute, there are roughly

a million different unique combinations of inputs that can be tested:

(1024− 64) ∗ (24− 2) ∗ (16− 2) ∗ 2 ∗ 2 = 1182720.

Obviously we do not have enough compute to run a million, or even close to a million, test

runs for each compute level, especially for higher total FLOPS. For example, at the 1 ∗ 1017
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level, we could only run 20 trial runs before exhausting all compute resources for training.

Therefore, I needed to implement more intelligent ways of exploring the hyperparameter

space that could rely upon sparse sampling. These are the methods that I attempted:

Gradient Update Policy Optimization: I took inspiration from reinforcement learning

paradigms and attempted to conduct gradient descent on the hyperparameter space using

Monte Carlo gradient estimation. The procedure for each level of compute is as follows:

1. Initialize the hyperparameters randomly.

2. Calculate the loss at the current point in the hyperparameter space.

3. Calcualate the loss at a randomly chosen point close to the first point.

4. Use the change in loss to create a gradient with respect to each of the hyperparameters

and increment or decrement them accordingly.

5. Repeat 2-5 at this new point until convergence.

This procedure kind of worked, but it had a few problems. Firstly, it assumes that the

hyperparameter-loss space is convex which it probably is not (in general it probably would

not be, but I also have no idea what kind of interpolation you guys did for the API). Secondly,

even if stochastic gradient descent was noisy enough to approach a decent minimum, the

estimation method is still a terrible approximation of the true gradient. This is because I

had to rely on sparse sampling (due to computation limits) as well as fit the model within

the discrete confines of the API input space. Gradient descent does not work well when

there are for example only 2 choices for batch size and learning rate. The third problem is

that the approach is a little suspicious to be using at all. The analogy of hyperparameters

as parameters for a policy with an associated simulated utility function is loose, but it still

worked well enough for me to get descent results for some of the smaller compute levels.

However, the cost for each run was

2 ∗ flops ∗ num steps

which is far too steep for larger runs. For higher compute budgets, I had to invent more

clever methods.

Coordinate Descent: My second approach was to instead of optimizing all the hyper-

parameters simultaneously, just to optimize one at a time until convergence. The procedure

is as follows:

1. Initialize the hyperparameters randomly.

2. Loop through all parameters repeatedly, doing steps 3-4 for each, until convergence.

3. Fix all parameters in place except for the chosen parameter.
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4. Conduct a binary search over the 1 dimensional hyperparameter space until an optimal

value is found.

This method worked quite well, and even resulted in a few of the optimal runs I ended

up using for my Chinchilla-like extrapolation done later on; however, it again had a few

issues. One, it performs best when the loss landscape is smooth and unimodal, which ours

isn’t necessarily. If it was, then it would necessarily reach a global minimum, but since it

probably isn’t, it may get stuck in some local minimum. Furthermore, some parameters

should be optimized jointly, like model size parameters. For example, if we already have

the optimal model size determined, but not the correct width to depth determined, then

coordinate descent won’t change anything because the depth and width are already the best

given the other parameters, but not the best they could be in theory. The third problem is

again that this uses a lot of computation because the cost is:

num iter ∗ flops ∗
∑

p∈params

log2 |sample space(p)|

Bayesian optimization using Gaussian Processes: Since evaluating each training loss

is expensive, it is helpful to rely on a process that avoids approximating other metrics like

gradients and instead attempts to directly learn the posterior distribution over hyperparam-

eters that leads to the best training loss. In order to balance exploration and exploitation,

points are first randomly sampled uniformly from the entire hyperparameter space, then

promising areas are explored further until the best combination is found (within n function

calls, so may not find the actual optimal value). This method assumes a multi-modal Gaus-

sian distribution over the hyperparameter-loss space and improves the approximation with

each added sample. This is still bottlenecked by compute since for longer training runs, we

still only have a few samples to get it right. This is why it’s important to have an educated

guess for the prior before starting the process. For this, I used the scaling curves derived in

the previous section to approximate the optimal number of parameters (which I now realize

may be futile since that data was fabricated). I then used the conventional wisdom that the

width to depth ratio should be roughly 125 and the width to number of heads ratio should be

roughly 64. This I fed into the model to serve as the initial first guess. Finally, I decreased

the number of samples for each compute level so that each level used approximately the

same amount of the total compute budget (1.5%).

3 Scaling Curves

Once I found the approximate optimal hyperparameter settings for each compute budget, I

fit a least squares regression line on the log-log plot of each parameter against total traing

FLOPS. This led to some questionable fits either since the optimal model size and hyperpa-

rameters do not scale linearly in the log-log space or (more likely) my previously described
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approaches did not find the optimal selections for each compute budget. The scaling laws

for each hyperparameter are shown below along with the extrapolated value for the large

training run of 1019 FLOPS.

d = 0.0260 ∗ f 0.24 (3)

Extrapolated best model dimension: 951.504.
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l = 0.166 ∗ f 0.10 (4)

Extrapolated best number layers: 12.814.

h = 0.310 ∗ f 0.09 (5)

Extrapolated best number heads: 14.069.
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b = 15.3 ∗ f 0.06 (6)

Extrapolated best batch size: 259.868

b = 0.001 (7)

Extrapolated best learning rate: 0.001.
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b = 173 ∗ f−0.09 (8)

Extrapolated Loss for a model with the given hyperparameters: 3.008.

4 Final Notes

These are obviously not very impressive results, so I’m not getting published any time

soon. My final predictions for the optimal 1019 FLOPS model (after rounding to the nearest

API input value) were 952 for the model dimension, 14 for the number of heads (which is

conveniently an even divider for the d model), 13 for the number of layers, 256 for batch size

and 0.001 for the learning rate. This leads to a total number of non-embedding parameters

of 141,383,424.
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